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A direct experimental approach to the problem of anisotropic extinction is

presented. Structure-factor measurements from a vanadium and a niobium

crystal, performed with four �-ray wavelengths in the range 0.02–0.06 Å,

substantiate the adequacy of Zachariasen’s theory [Acta Cryst. (1967), 23,

558–564] in high-energy diffraction, which provides a theoretical basis for

the extrapolation to zero extinction values. Fitting of the theoretical curve to the

observed points, placed on a common scale, allows determination of the

kinematical structure-factor value without the need for a particular model of

anisotropy in the mosaic structure.

1. Introduction

The work presented here complements and expands earlier

results (Palmer & Jauch, 1995; Jauch & Palmer, 2002), dealing

with the experimental accessibility of extinction-free structure

factors. Our interest in this problem was rekindled by charge-

density studies of vanadium and niobium. In the course of data

collection, it became clear that serious anisotropic extinction

effects were present in both crystals (Jauch & Reehuis, 2011).

Overcoming the anisotropy problem turned out to be crucial

for an unequivocal determination of the intensities of the two

innermost reflections 110 and 200, which are extremely

sensitive to small changes in the valence charge distribution.

A highly anisotropic mosaic block orientation was also

found in a recent �-ray study of cobalt (Jauch & Reehuis,

2009). Misorientation about the hexagonal growth axis of the

crystal was much larger than that perpendicular to it. The

ensuing anisotropy in secondary extinction could be fairly well

described by the Thornley & Nelmes (1974) form for the

angular distribution, with adjusted mosaicities close to the

directly observed ones. The anisotropy problem was greatly

simplified by the fact that the second-rank mosaic spread

tensor had the point symmetry of the crystal, so that the

number of independent elements was reduced from six to two.

In general, the extinction tensor does not have to conform to

the crystal symmetry, and anisotropic extinction corrections

should be considered with great care since they may correlate

with other anisotropy parameters, eventually leading to false

conclusions. It is this concern that prompted the present

approach of evading an anisotropic extinction model.

Extinction-free structure-factor values can be attained by a

series of measurements involving a certain range of wave-

lengths. A prerequisite of such an inquiry is an adequate

theoretical description of the wavelength dependence of

extinction. On the experimental side, the wavelength range

must be large enough and close to zero wavelength to lead to

reliable estimates of the kinematical values. The last point may

be illustrated for the case of a straight-line fit y = a + bx, where

the correlation between the uncertainties of the slope b and

the intercept a depends on the origin of the x coordinate. An

origin well outside the data range will lead to a strong corre-

lation, which is much reduced if the data are close to the

origin.

2. Experimental

Vanadium and niobium have body-centred cubic structures

with lattice constants a(V) = 3.0240 Å and a(Nb) = 3.3004 Å.

The sizes of the V and Nb single crystals were 2.57 � 2.56 �

2.55 mm and 2.71 � 2.57 � 2.43 mm, respectively. The use of

reasonably large samples in combination with penetrating

�-radiation avoids errors arising from inhomogeneity of the

state of crystal perfection. When small specimens are

employed at short-wavelength synchrotron beams, the

presence of a rather perfect interior core surrounded by a less

perfect surface will substantially affect the reflection inten-

sities, and estimates of the actual amount of extinction are

liable to be in error. For example, in a 100 keV synchrotron

X-ray study of Cu2O, Lippmann & Schneider (2000) found a

core-to-surface volume ratio close to one.

The diffraction experiments were performed on the �-ray

diffractometer at the Helmholtz-Zentrum Berlin, which is

equipped with a 192Ir source (T1/2 = 73.83 d). Rocking curves

were recorded in double-crystal configuration, with a perfect

Si crystal (angular resolution 1.5 arcsec) before the specimen.

For vanadium, the profiles were composed of several close

constituents that could not be fully resolved, but an angular

FWHM of around 30 arcsec was perceptible. For niobium, a

moderate anisotropy was observed with an FWHM variation

between 2.2 and 2.7 arcmin.

Extinction anisotropy is most pronounced for the strongest

reflections. In the �-ray data sets of V and Nb (complete to
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sin �/� = 1.9 Å�1) the first two reflections, 110 and 200,

appeared to be affected by anisotropic extinction with marked

intensity differences between symmetry equivalents.

Measurements at different azimuthal settings  around the

scattering vector rejected multiple diffraction as a possible

cause. The very small number of data with detectable aniso-

tropy precludes a refinement of six independent tensor

components.

Four �-lines of wavelength 0.0205, 0.0265, 0.0392 and

0.0602 Å were used to determine the three lowest-order

reflections, including some symmetry equivalents. Each

wavelength was selected by means of a single-channel

analyser. Owing to a reduction in incident flux and crystal

reflectivity, intensities at � = 0.0205 Å are relatively weak and

consequently less precise. The linear absorption coefficients �
were taken from Hubell & Seltzer (1995), and absorption

corrections were performed by the analytical method imple-

mented in Xtal (Hall et al., 1995). For inter-wavelength scaling

(incoming flux, detector efficiency), a few reflections of

intermediate intensity were measured to 1% counting statis-

tical precision or better. Their absolute values are known from

the accurate structural parameters, with remaining weak

extinction being taken into account. The final absolute scale

was obtained by combining the extrapolated data with the

extended data sets at � = 0 0.0392 Å. The final scale in F 2

differed from the preliminary one by 2% and 1.3% for V and

Nb, respectively.

Absolute values of F 2 at the four different photon energies

are reported in Tables 1 and 2. At the shortest wavelength, the

innermost reflections {110} suffered from a large background,

arising from the very small Bragg angles down to � = 0.25�, and

eluded a determination of adequate accuracy. The {200}

intensities for V appear to be too small by about 2% at � =

0.0205 Å. The magnitude of intensity diminution indicates the

possibility that multiple diffraction has been operative for this

orientation. Because of a lack of time, the low-order reflec-

tions were checked for multiple diffraction only with the most

intense �-line (� = 0.0392 Å).

3. Results

According to Zachariasen (1967), the extinction coefficient,

defined by y = Iobs/Ikin as the ratio of the observed integrated

intensity to its kinematical value, has the simple form y =

(1 + 2x)�1/2 where x = g T� �
2(F/V)2d for small Bragg angles as

in �-ray diffraction (g = 0.6643/FWHM [rad] for a Gaussian

mosaic distribution, T� = absorption-weighted mean path

length of the diffracted beam, F = kinematical structure factor

in units of scattering length, V = unit-cell volume, d = inter-

planar distance). Anisotropic extinction effects resulting from

crystal-shape anisotropy are taken into account by T� .

Calculation of T� was carried out with Xtal (Hall et al., 1995).

As a rule, T� varies from one wavelength to another, and

linear interpolations are given in Table 3.

The wavelength-dependent data were fitted to Zachar-

iasen’s expression using the Levenberg–Marquardt algorithm.

The measurement uncertainties are composed of the counting

statistical contribution and the uncertainty in the scale factors.
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Table 1
Absolute values of F2 and associated standard deviations at the four different wavelengths for vanadium.

FWHM and F2(� = 0) are the parameters obtained by fitting Zachariasen’s model to the observations. The calculated values, F2
c , are derived from multipole model

refinements of an extended data set.

hkl

110 101 01�11 200 020 211 121 112

F2 (0.0205 Å) 589 (6) 572 (6) 437 (5) 431 (5) 428 (5)
F2 (0.0265 Å) 844 (3) 802 (3) 830 (3) 587 (2) 566 (2) 429 (2) 425 (2) 424 (2)
F2 (0.0392 Å) 724 (1) 665 (1) 705 (1) 525 (1) 493 (1) 397 (1) 391(1) 385 (1)
F2 (0.0602 Å) 578 (3) 518 (3) 559 (3) 443 (2) 399 (2) 349 (2) 339(2) 334 (2)
FWHM (arcsec) 27.4 (6) 18.4 (4) 23.0 (5) 20.8 (5) 14.6 (3) 18.8 (8) 16.8 (6) 16.1 (6)
F2(� = 0) 986 (7) 989 (9) 985 (8) 641 (3) 643 (4) 456 (3) 455 (3) 454 (3)
F2

c 989 989 989 640 640 453 453 453

Table 2
Absolute values of F2 and associated standard deviations at the four different wavelengths for niobium.

FWHM and F2(� = 0) are the parameters obtained by fitting Zachariasen’s model to the observations. The calculated values, F2
c , are derived from multipole model

refinements of an extended data set.

hkl

110 01�11 200 020 002 211

F2 (0.0205 Å) 2782 (29) 2750 (27) 2770 (23) 2197 (23)
F2 (0.0265 Å) 3432 (14) 3583 (14) 2750 (11) 2719 (11) 2761 (12) 2187 (12)
F2 (0.0392 Å) 3015 (8) 3366 (8) 2585 (7) 2540 (7) 2643 (6) 2074 (6)
F2 (0.0602 Å) 2487 (11) 2920 (10) 2357 (10) 2273 (10) 2494 (9) 1894 (9)
FWHM (arcmin) 1.63 (4) 3.05 (9) 2.25 (9) 1.90 (7) 3.77 (8) 1.68 (9)
F2(� = 0) 3848 (25) 3857 (19) 2861 (13) 2859 (14) 2817 (12) 2263 (12)
F2

c 3882 3882 2798 2798 2798 2198



Two parameters have been varied, the kinematical structure-

factor amplitude F(� = 0) and the mosaic width parameter

g. Graphs of data and fitting curves are displayed in Figs. 1 and

2, and the fit results have been included in Tables 1 and 2.

It is seen that the wavelength dependence of extinction is

adequately accounted for by Zachariasen’s equation. The

anisotropy in the fitted mosaic widths is about two:

FWHM = 14.6 (3)–27.4 (6) arcsec for V, and FWHM =

1.63 (4)–3.77 (8) arcmin for Nb. The precision of the extra-

polated squared structure factors is substantially better than

1%. Note that symmetry-equivalent reflections have not been

constrained to satisfy equality for F 2(� = 0) but have been

fitted independently. Nevertheless, the extrapolation leads to

virtually identical kinematic structure factors, thus meeting a

strict criterion for the assessment of the fits. In spite of the

rather different mosaic widths, the amount of extinction is

similar for the two crystals. The smallest extinction factors are

ymin = 0.52 for V and 0.65 for Nb. From consideration of the

expression x � gF 2, which governs secondary extinction, it is

seen that the effect of a decrease in g can be offset by an

increase in F 2 arising from the higher electron number.

The practice of truncating the power-series expansion of the

Zachariasen expression at the first-order term, y ’ 1 � x, for

linear extrapolation against �2 is only useful for very small x.

When x = 0.2, one has y = 0.845, deviating more than 5% from

the first-order approximation. In the present work, the largest

values of x are 1.32 and 0.70 for V and Nb, respectively, and

y(�) is evidently not a linear function of �2.

4. Discussion

It is instructive to make a comparison with other theoretical

developments within the framework of the mosaic crystal

model. The most popular extinction correction in crystal-

lographic least-squares programs is that of Becker & Coppens

(1974), where an additional term is introduced in the square-

root function for y to take account of the angular dependence

and severity of extinction. Angular-dependent extinction

effects are negligible in �-ray diffraction. Application of the

Becker & Coppens expression for a Lorentzian mosaic

distribution leads to the conclusion that it is just as successful

as Zachariasen’s expression. For Nb(200) and Nb(020), one

obtains F2(� = 0) = 2854 (13) and 2851 (13), respectively, in

close agreement with the values from Table 1. Use of a

Gaussian distribution within the Becker & Coppens formalism

leads to somewhat poorer fits. According to Ockham’s razor,

more complex models should not be preferred over simpler

ones when both explain available data equally well. This

maxim singles out Zachariasen’s function. It is noteworthy

that no shortcomings of Zachariasen’s theory have been

found in previous model comparisons based on wavelength-
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Figure 2
Observed squared structure factors on an absolute scale for niobium. The
solid lines are fits using Zachariasen’s extinction function.

Table 3
Variation of the absorption-weighted mean path lengths in the range � =
0.02–0.06 Å for the low-order reflections under investigation.

The interpolation is of the form T� (mm) = a � b� (Å).

hkl T� (vanadium) T� (niobium)

110 2.478 � 0.115� 2.549 � 0.386�
101 2.357 � 0.450� 2.437 � 2.646�
01�11 2.326 � 0.314� 2.483 � 2.714�
200 2.333 � 0.499� 2.448 � 2.765�
020 2.357 � 0.451� 2.481 � 2.697�
002 2.501 � 0.082� 2.435 � 2.231�
211 2.335 � 0.462� 2.405 � 1.301�
121 2.360 � 0.675�
112 2.423 � 0.179�

Figure 1
Observed squared structure factors on an absolute scale for vanadium.
The solid lines are fits using Zachariasen’s extinction function.



dependent �-ray and neutron time-of-flight data (Jauch et al.,

1988; Palmer & Jauch, 1995).

The Zachariasen and Becker & Coppens formalisms share

the common assumption that there is no spatial correlation

between the different mosaic blocks, so that in the limit of zero

mosaic spread the crystal consists of parallel blocks separated

by random displacements. According to Sabine’s model

(Sabine, 1992) of correlated blocks, a monolithic perfect

crystal results for vanishing mosaic spread. Application of

Sabine’s expression for secondary extinction clearly demon-

strates its inadequacy to describe the wavelength dependence.

The �2 values are more than an order of magnitude larger than

those for the Zachariasen model. The correlated block model

is disproved by experiment (Palmer & Jauch, 1995).

It has been assumed so far that the crystals are subject to

secondary extinction only. The expected magnitude of primary

extinction deserves closer inspection. The primary extinction

factor may be approximated by yp ’ exp[�(�/2)2], where � is

the average size of the perfect domains in units of the

extinction length text [= V/(�F)] (Suortti, 1982). The smallest

value of text is 34 mm for Nb(110) at � = 0.0602 Å. Even if there

were perfect regions as large as 5 mm in diameter, then

primary extinction would be restricted to yp� 0.995. Note that

this limit refers to the worst case. The corresponding value for

Mo K� radiation is yp ’ 0.5. The problematic coexistence of

both types of extinction is thus avoided in �-ray diffraction

thereby allowing direct evaluation of pure secondary extinc-

tion.

It is of interest to compare the extrapolated values of F2
o

with the calculated (extinction-free) values, F2
c , as obtained

from multipole model refinements of extended data sets. In

the multipole model, the atomic electron density in a crystal is

partitioned into core electron functions and a nucleus-centred

expansion of spherical harmonic valence-density functions.

For vanadium, symmetry-equivalent reflections from the set

{211} were included in the multipole model refinement, the

three extrapolated ones, and, concomitantly, eight equivalents

measured at � = 0.0392 Å (y = 0.880–0.887). For the three limit

values one obtains, RðF2Þ ¼
P
jF2

o � F2
c j=
P

F2
o ¼ 0:0039

and Rð	Þ ¼
P
	ðF2

oÞ=
P

F2
o ¼ 0:0065, whereas the eight

extinction-affected reflections give R(F2) = 0.0070 and R(	) =

0.0031. For the extended complete data set, comprising 382

observations (102 of them unique), R(F2) = 0.0078 and R(	) =

0.0057. There is thus consistency between the data sets, with

the limit values of the structure factors being in agreement

with the predictions from the least-squares refinements. The

agreement is less perfect in the case of Nb. A possible

explanation is found in the lowered overdetermination

concerning the adjustable valence-density parameters. Only a

very few reflections carry information on the diffuse 4d

valence shell, which are therefore most influential for their

fitted counterparts.

Finally, it is worth considering whether kinematical condi-

tions are within reach at synchrotron sources. For a given

crystal, secondary extinction depends upon the product T��
2,

other things being equal. It is apparent that a decrease in

wavelength is much more efficient in its reduction than the use

of a smaller specimen. For a diffraction experiment with

100 keV synchrotron X-rays from a 0.2 mm crystal, the

amount of secondary extinction is the same as that found with

316.5 keV �-rays and 2 mm samples, since both experiments

share the same value of T��
2. This emphasizes that extinction-

free X-ray structure factors from compounds containing

heavier elements are generally unattainable by single-

wavelength measurements.

5. Conclusion

In conclusion, it has been demonstrated that wavelength-

dependent �-ray diffraction can be used to resolve ambiguities

in experimental structure-factor determination arising from

anisotropic extinction. Zachariasen’s theory provides a proper

function that allows faithful extrapolation to the kinematical

limit.

We would like to thank Dr H.-J. Bleif for valuable discus-

sions.
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